Search results
Results from the WOW.Com Content Network
A circular prime number is a number that remains prime on any cyclic rotation of its digits (in base 10). ... (d = 1, 3, 7, 9) are primes ending in the decimal digit ...
In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [1] [2] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89. [3]
A prime number p of the form = + where q is an odd prime. A000979: Wieferich primes: 1093, 3511 Primes satisfying 2 p−1 ≡ 1 (mod p 2). A001220: Sophie Germain primes: 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, ... A prime number p such that 2p + 1 is also prime. A005384: Wilson primes: 5, 13, 563 Primes satisfying (p−1)! ≡ −1 (mod p 2 ...
A Mersenne prime is a prime number of the form M p = 2 p − 1, one less than a power of two. For a number of this form to be prime, p itself must also be prime, but not all primes give rise to Mersenne primes in this way. For instance, 2 3 − 1 = 7 is a Mersenne prime, but 2 11 − 1 = 2047 = 23 × 89 is not.
The prime number race generalizes to other moduli and is the subject of much research; Pál Turán asked whether it is always the case that π c,a (x) and π c,b (x) change places when a and b are coprime to c. [34] Granville and Martin give a thorough exposition and survey. [33] Graph of the number of primes ending in 1, 3, 7, and 9 up to n ...
In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n is also a positive integer. In other words, there are infinitely many primes that are congruent to a modulo d.
In number theory, the Green–Tao theorem, proved by Ben Green and Terence Tao in 2004, states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words, for every natural number k {\displaystyle k} , there exist arithmetic progressions of primes with k {\displaystyle k} terms.