Search results
Results from the WOW.Com Content Network
The Golgi apparatus (/ ˈ ɡ ɒ l dʒ i /), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic cells. [1] Part of the endomembrane system in the cytoplasm , it packages proteins into membrane-bound vesicles inside the cell before the vesicles are sent to their destination.
The Golgi apparatus plays a pivotal role in N-linked glycosylation, a process that begins in the ER and is elaborated within the Golgi. Through the sequential trimming and addition of sugars like GlcNAc, mannose, galactose, and sialic acid, the Golgi ensures that proteins are properly modified for their final functional roles.
The Golgi apparatus (also known as the Golgi body and the Golgi complex) is composed of separate sacs called cisternae. Its shape is similar to a stack of pancakes. The number of these stacks varies with the specific function of the cell. The Golgi apparatus is used by the cell for further protein modification.
The Golgi matrix is a collection of proteins involved in the structure and function of the Golgi apparatus. [1] [2] [3] The matrix was first isolated in 1994 as an amorphous collection of 12 proteins that remained associated together in the presence of detergent (which removed Golgi membranes) and 150 m M NaCl (which removed weakly associated proteins). [4]
In terms of protein synthesis, the necessary organelles are relatively near one another. The nucleolus within the nuclear envelope is the location of ribosome synthesis. The destination of synthesized ribosomes for protein translation is rough endoplasmic reticulum (rough ER), which is connected to and shares the same membrane with the nucleus.
Since the ER is the site of protein synthesis, it would serve as the parent organelle, and the cis face of the golgi, where proteins and signals are received, would be the acceptor. In order for the transport vesicle to accurately undergo a fusion event, it must first recognize the correct target membrane then fuse with that membrane.
Golgi apparatus (or, Golgi body) Cytoskeleton; Smooth endoplasmic reticulum; Mitochondrion; Vacuole; Cytosol (fluid that contains organelles; with which, comprises cytoplasm) Lysosome; Centrosome; Cell membrane
The polarity of the microtubules is important for cellular transport, as the motor proteins kinesin and dynein typically move preferentially in the "plus" and "minus" directions respectively, along a microtubule, allowing vesicles to be directed to or from the endoplasmic reticulum and Golgi apparatus. Particularly for the Golgi apparatus ...