Search results
Results from the WOW.Com Content Network
Gauss–Legendre quadrature is optimal in a very narrow sense for computing integrals of a function f over [−1, 1], since no other quadrature rule integrates all degree 2n − 1 polynomials exactly when using n sample points. However, this measure of accuracy is not generally a very useful one---polynomials are very simple to integrate and ...
Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. [1] All Gauss–Legendre methods are A-stable. [2] The Gauss–Legendre method of order two is the implicit midpoint rule.
This exact rule is known as the Gauss–Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1]. The Gauss–Legendre quadrature rule is not typically used for integrable functions with endpoint singularities ...
The Gauss–Legendre methods use the points of Gauss–Legendre quadrature as collocation points. The Gauss–Legendre method based on s points has order 2s. [2] All Gauss–Legendre methods are A-stable. [3] In fact, one can show that the order of a collocation method corresponds to the order of the quadrature rule that one would get using the ...
These methods are based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method of order four ... For example, Lobatto IIID family introduced in ...
An enhancement to the Chebyshev pseudospectral method that uses a Clenshaw–Curtis quadrature was developed. [18] The LPM uses Lagrange polynomials for the approximations, and Legendre–Gauss–Lobatto (LGL) points for the orthogonal collocation. A costate estimation procedure for the Legendre pseudospectral method was also developed. [19]
The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...
Gauss published the first and second proofs of the law of quadratic reciprocity on arts 125–146 and 262 of Disquisitiones Arithmeticae in 1801.. In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers.