enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. The general principle for orbital overlap is that, the greater the greater the over between orbitals, the greater is the bond strength.

  3. Hückel method - Wikipedia

    en.wikipedia.org/wiki/Hückel_method

    Transition electric dipole, magnetic dipole and electric quadrupole moments interactions result in optical rotation(OR), which can be described by both tensor components and chemical geometries. The in phase overlap of two molecular orbitals yield negative charge while depleting charge out of phase.

  4. Double bond rule - Wikipedia

    en.wikipedia.org/wiki/Double_bond_rule

    Double bonds for these heavier elements, when they exist, are often weak due to poor orbital overlap between the n>2 orbitals of the two atoms. Although such compounds are not intrinsically unstable, they instead tend to dimerize or even polymerize. [1]

  5. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Atomic orbitals must also overlap within space. They cannot combine to form molecular orbitals if they are too far away from one another. Atomic orbitals must be at similar energy levels to combine as molecular orbitals. Because if the energy difference is great, when the molecular orbitals form, the change in energy becomes small.

  6. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The superposition of the two 1s atomic orbitals leads to the formation of the σ and σ* molecular orbitals. Two atomic orbitals in phase create a larger electron density, which leads to the σ orbital. If the two 1s orbitals are not in phase, a node between them causes a jump in energy, the σ* orbital.

  7. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    The orbitals with a well-defined magnetic quantum number are generally complex-valued. Real-valued orbitals can be formed as linear combinations of m ℓ and −m ℓ orbitals, and are often labeled using associated harmonic polynomials (e.g., xy, x 2 − y 2) which describe their angular structure.

  8. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    Molecular orbitals are said to be degenerate if they have the same energy. For example, in the homonuclear diatomic molecules of the first ten elements, the molecular orbitals derived from the p x and the p y atomic orbitals result in two degenerate bonding orbitals (of low energy) and two degenerate antibonding orbitals (of high energy). [13]

  9. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    σ bond between two atoms: localization of electron density Two p-orbitals forming a π-bond. The overlapping atomic orbitals can differ. The two types of overlapping orbitals are sigma and pi. Sigma bonds occur when the orbitals of two shared electrons overlap head-to-head, with the electron density most concentrated between nuclei.