Search results
Results from the WOW.Com Content Network
In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.
To summarize, we are assuming that: (1) the energy of an electron in an isolated C(2p z) orbital is =; (2) the energy of interaction between C(2p z) orbitals on adjacent carbons i and j (i.e., i and j are connected by a σ-bond) is =; (3) orbitals on carbons not joined in this way are assumed not to interact, so = for nonadjacent i and j; and ...
Pi bonds result from overlap of atomic orbitals that are in contact through two areas of overlap. Most orbital overlaps that do not include the s-orbital, or have different internuclear axes (for example p x + p y overlap, which does not apply to an s-orbital) are generally all pi bonds. Pi bonds are more diffuse bonds than the sigma bonds.
Atomic orbitals must also overlap within space. They cannot combine to form molecular orbitals if they are too far away from one another. Atomic orbitals must be at similar energy levels to combine as molecular orbitals. Because if the energy difference is great, when the molecular orbitals form, the change in energy becomes small.
In hydrogen fluoride HF overlap between the H 1s and F 2s orbitals is allowed by symmetry but the difference in energy between the two atomic orbitals prevents them from interacting to create a molecular orbital. Overlap between the H 1s and F 2p z orbitals is also symmetry allowed, and these two atomic orbitals have a small energy separation ...
The superposition of the two 1s atomic orbitals leads to the formation of the σ and σ* molecular orbitals. Two atomic orbitals in phase create a larger electron density, which leads to the σ orbital. If the two 1s orbitals are not in phase, a node between them causes a jump in energy, the σ* orbital.
The orbitals with a well-defined magnetic quantum number are generally complex-valued. Real-valued orbitals can be formed as linear combinations of m ℓ and −m ℓ orbitals, and are often labeled using associated harmonic polynomials (e.g., xy, x 2 − y 2) which describe their angular structure.
σ bond between two atoms: localization of electron density Two p-orbitals forming a π-bond. The overlapping atomic orbitals can differ. The two types of overlapping orbitals are sigma and pi. Sigma bonds occur when the orbitals of two shared electrons overlap head-to-head, with the electron density most concentrated between nuclei.