enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eukaryotic chromosome structure - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_chromosome...

    Packaging of nucleosomes into higher order chromatin structures involves the use of loops and coils. In eukaryotes, such as humans, roughly 3.2 billion nucleotides are spread out over 23 different chromosomes (males have both an X chromosome and a Y chromosome instead of a pair of X chromosomes as seen in females). Each chromosome consists ...

  3. Solenoid (DNA) - Wikipedia

    en.wikipedia.org/wiki/Solenoid_(DNA)

    In 1974, it was first proposed by Roger Kornberg that chromatin was based on a repeating unit of a histone octamer and around 200 base pairs of DNA. [1] The solenoid model was first proposed by John Finch and Aaron Klug in 1976. They used electron microscopy images and X-ray diffraction patterns to determine their model of the structure. [2]

  4. Nucleosome - Wikipedia

    en.wikipedia.org/wiki/Nucleosome

    In contrast to most eukaryotic cells, mature sperm cells largely use protamines to package their genomic DNA, most likely to achieve an even higher packaging ratio. [17] Histone equivalents and a simplified chromatin structure have also been found in Archaea, [18] suggesting that eukaryotes are not the only organisms that use nucleosomes.

  5. Chromatin - Wikipedia

    en.wikipedia.org/wiki/Chromatin

    Chromatin is a complex of DNA and protein found in eukaryotic cells. [1] The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in reinforcing the DNA during cell division , preventing DNA damage , and regulating gene expression ...

  6. Histone H2A - Wikipedia

    en.wikipedia.org/wiki/Histone_H2A

    Basic units of chromatin structure. DNA Folding: H2A is important for packaging DNA into chromatin. Since H2A packages DNA molecules into chromatin, the packaging process will affect gene expression. H2A has been correlated with DNA modification and epigenetics. H2A plays a major role in determining the overall structure of chromatin.

  7. Chromosome - Wikipedia

    en.wikipedia.org/wiki/Chromosome

    The packaging of DNA into nucleosomes causes a 10 nanometer fibre which may further condense up to 30 nm fibres. [33] Most of the euchromatin in interphase nuclei appears to be in the form of 30-nm fibers. [33] Chromatin structure is the more decondensed state, i.e. the 10-nm conformation allows transcription. [33] Heterochromatin vs. euchromatin

  8. Chromosome conformation capture - Wikipedia

    en.wikipedia.org/wiki/Chromosome_conformation...

    The chromosome conformation capture (3C) experiment quantifies interactions between a single pair of genomic loci. For example, 3C can be used to test a candidate promoter-enhancer interaction. Ligated fragments are detected using PCR with known primers. [2] [17] That is why this technique requires the prior knowledge of the interacting regions.

  9. Nucleoprotein - Wikipedia

    en.wikipedia.org/wiki/Nucleoprotein

    In eukaryotic cells, DNA is associated with about an equal mass of histone proteins in a highly condensed nucleoprotein complex called chromatin. [14] Deoxyribonucleoproteins in this kind of complex interact to generate a multiprotein regulatory complex in which the intervening DNA is looped or wound.