Search results
Results from the WOW.Com Content Network
A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could be a scalar or a vector (that is, the dimension of the domain could be 1 or greater than 1); the ...
One can define the pullback of vector-valued forms by smooth maps just as for ordinary forms. The pullback of an E-valued form on N by a smooth map φ : M → N is an (φ*E)-valued form on M, where φ*E is the pullback bundle of E by φ. The formula is given just as in the ordinary case. For any E-valued p-form ω on N the pullback φ*ω is ...
The history of learning vector-valued functions is closely linked to transfer learning- storing knowledge gained while solving one problem and applying it to a different but related problem. The fundamental motivation for transfer learning in the field of machine learning was discussed in a NIPS-95 workshop on “Learning to Learn”, which ...
Given a subset S of R n, a vector field is represented by a vector-valued function V: S → R n in standard Cartesian coordinates (x 1, …, x n). If each component of V is continuous, then V is a continuous vector field. It is common to focus on smooth vector fields, meaning that each component is a smooth function (differentiable any number ...
This is equivalent to finding the zeroes of a single vector-valued function :. In the formulation given above, the scalars x n are replaced by vectors x n and instead of dividing the function f ( x n ) by its derivative f ′ ( x n ) one instead has to left multiply the function F ( x n ) by the inverse of its k × k Jacobian matrix J F ( x n ) .
Vector-valued functions, where the output is a vector, are scrutinized using calculus to derive essential insights into motion within three-dimensional space. Vector calculus extends traditional calculus principles to vector fields, introducing operations like gradient , divergence , and curl , which find applications in physics and engineering ...
Vector optimization is a subarea of mathematical optimization where optimization problems with a vector-valued objective functions are optimized with respect to a given partial ordering and subject to certain constraints.
The solutions to the differential equation are a family of functions. Graphically, this can be plotted in the phase plane like a two-dimensional vector field. Vectors representing the derivatives of the points with respect to a parameter (say time t), that is (dx/dt, dy/dt), at representative points are drawn.