enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  3. List of definite integrals - Wikipedia

    en.wikipedia.org/wiki/List_of_definite_integrals

    In mathematics, the definite integral ()is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.

  4. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (antiderivative functions) of trigonometric functions.For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions.

  5. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer. [1] [2] Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.

  6. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    Instead of +∞ and −∞, we have only one ∞, at both ends of the real line. That is often appropriate when dealing with rational functions and with trigonometric functions. (This is the one-point compactification of the line.) As x varies, the point (cos x, sin x) winds repeatedly around the unit circle centered at (0, 0). The point

  7. List of integrals of exponential functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The last expression is the logarithmic mean. = (⁡ >) = (>) (the Gaussian integral) = (>) = (, >) (+) = (>)(+ +) = (>)= (>) (see Integral of a Gaussian function

  8. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    One may view the method of integration by substitution as a partial justification of Leibniz's notation for integrals and derivatives. The formula is used to transform one integral into another integral that is easier to compute. Thus, the formula can be read from left to right or from right to left in order to simplify a given integral.

  9. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.