Search results
Results from the WOW.Com Content Network
Allosteric regulation of an enzyme. In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function.
A simplified reaction mechanism for N-acetylglutamate synthase (NAGS). Two mechanisms for N-acetyltransferase function have been proposed: a two-step, ping-pong mechanism involving transfer of the relevant acetyl group to an activated cysteine residue [10] and a one-step mechanism through direct attack of the amino nitrogen on the carbonyl group. [11]
Catabolite Control Protein A (CcpA) is a master regulator of carbon metabolism in gram-positive bacteria. [2] It is a member of the LacI/GalR transcription regulator family. [2] In contrast to most LacI/GalR proteins, CcpA is allosterically regulated principally by a protein-protein interaction, rather than a protein-small molecule interaction. [2]
In this manner, effector molecules act as ligands that can increase or decrease enzyme activity, gene expression, influence cell signaling, or other protein functions. An example of such an effector is oxygen, which is an allosteric effector of hemoglobin - oxygen binding to one of the four hemoglobin subunits greatly increases the affinity of ...
The site that an allosteric modulator binds to (i.e., an allosteric site) is not the same one to which an endogenous agonist of the receptor would bind (i.e., an orthosteric site). Modulators and agonists can both be called receptor ligands. [2] Allosteric modulators can be 1 of 3 types either: positive, negative or neutral.
Allosteric enzymes are enzymes that change their conformational ensemble upon binding of an effector (allosteric modulator) which results in an apparent change in binding affinity at a different ligand binding site. This "action at a distance" through binding of one ligand affecting the binding of another at a distinctly different site, is the ...
Cyclic AMP functions as an allosteric effector by increasing CAP's affinity for DNA. CAP binds a DNA region upstream from the DNA binding site of RNA Polymerase. CAP activates transcription through protein-protein interactions with the α-subunit of RNA Polymerase.
The reaction it catalyzes is: pyruvate + HCO − 3 + ATP → oxaloacetate + ADP + P. It is an important anaplerotic reaction that creates oxaloacetate from pyruvate. PC contains a biotin prosthetic group [1] and is typically localized to the mitochondria in eukaryotes with exceptions to some fungal species such as Aspergillus nidulans which have a cytosolic PC.