Ad
related to: algebraic proof questions and answerskutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational; Proof that the sum of the reciprocals of the primes diverges
It was first conjectured in 1939 by Ott-Heinrich Keller, [1] and widely publicized by Shreeram Abhyankar, as an example of a difficult question in algebraic geometry that can be understood using little beyond a knowledge of calculus. The Jacobian conjecture is notorious for the large number of attempted proofs that turned out to contain subtle ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
A proof of this conjecture, together with the more powerful geometrization conjecture, was given by Grigori Perelman in 2002 and 2003. Perelman's solution completed Richard Hamilton 's program for the solution of the geometrization conjecture, which he had developed over the course of the preceding twenty years.
An elementary proof is a proof which only uses basic techniques. More specifically, the term is used in number theory to refer to proofs that make no use of complex analysis . For some time it was thought that certain theorems, like the prime number theorem , could only be proved using "higher" mathematics.
commutative algebra: Jean-Pierre Serre: 221 Singmaster's conjecture: binomial coefficients: David Singmaster: 8 Standard conjectures on algebraic cycles: algebraic geometry: n/a: 234 Tate conjecture: algebraic geometry: John Tate: Toeplitz' conjecture: Jordan curves: Otto Toeplitz: Tuza's conjecture: graph theory: Zsolt Tuza: Twin prime ...
These proofs of the Fundamental Theorem of Algebra must make use of the following two facts about real numbers that are not algebraic but require only a small amount of analysis (more precisely, the intermediate value theorem in both cases):
The proof of the Riemann hypothesis for varieties over finite fields by Deligne (1974) is possibly the single strongest theoretical reason in favor of the Riemann hypothesis. This provides some evidence for the more general conjecture that all zeta functions associated with automorphic forms satisfy a Riemann hypothesis, which includes the ...
Ad
related to: algebraic proof questions and answerskutasoftware.com has been visited by 10K+ users in the past month