enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circumscribed circle - Wikipedia

    en.wikipedia.org/wiki/Circumscribed_circle

    In geometry, a circumscribed circle for a set of points is a circle passing through each of them. Such a circle is said to circumscribe the points or a polygon formed from them; such a polygon is said to be inscribed in the circle. Circumcircle, the circumscribed circle of a triangle, which always exists for a given triangle.

  3. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals , circumscribing quadrilaterals , and circumscriptible ...

  4. Inscribed figure - Wikipedia

    en.wikipedia.org/wiki/Inscribed_figure

    A polygon inscribed in a circle is said to be a cyclic polygon, and the circle is said to be its circumscribed circle or circumcircle. The inradius or filling radius of a given outer figure is the radius of the inscribed circle or sphere, if it exists.

  5. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    Ex-tangential quadrilateral – Convex 4-sided polygon whose sidelines are all tangent to an outside circle; Harcourt's theorem – Area of a triangle from its sides and vertex distances to any line tangent to its incircle; Incenter–excenter lemma – A statement about properties of inscribed and circumscribed circles

  6. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius .

  7. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively.

  8. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    A tangential polygon is one having an inscribed circle tangent to each side of the polygon; these tangency points are thus concyclic on the inscribed circle. Let one n-gon be inscribed in a circle, and let another n-gon be tangential to that circle at the vertices of the first n-gon. Then from any point P on the circle, the product of the ...

  9. Tangential polygon - Wikipedia

    en.wikipedia.org/wiki/Tangential_polygon

    This is a circle that is tangent to each of the polygon's sides. The dual polygon of a tangential polygon is a cyclic polygon, which has a circumscribed circle passing through each of its vertices. All triangles are tangential, as are all regular polygons with any number of sides.