Search results
Results from the WOW.Com Content Network
The Cauchy product may apply to infinite series [1] [2] or power series. [3] [4] When people apply it to finite sequences [5] or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution). Convergence issues are discussed in the next section.
Convolution. Cauchy product –is the discrete convolution of two sequences; Farey sequence – the sequence of completely reduced fractions between 0 and 1; Oscillation – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.
where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).
The open interval = (,) in the set of real numbers with an ordinary distance in is not a complete space: there is a sequence = / in it, which is Cauchy (for arbitrarily small distance bound > all terms of > / fit in the (,) interval), however does not converge in — its 'limit', number 0, does not belong to the space .
[2] [3] Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the quadrature of the parabola. [4] [5] The mathematical side of Zeno's paradoxes was resolved using the concept of a limit during the 17th century, especially through the early calculus of Isaac Newton. [6]
3.3 If f is less than or equal to a scalar times its input, then it is linear 3.4 Non-constant elliptic functions cannot be defined on the complex plane 3.5 Entire functions have dense images
(This limit exists because the real numbers are complete.) This is only a pseudometric, not yet a metric, since two different Cauchy sequences may have the distance 0. But "having distance 0" is an equivalence relation on the set of all Cauchy sequences, and the set of equivalence classes is a metric space, the completion of M.
In particular, this sequence has the combinatorial interpretation as being the number of ways to insert parentheses into the product x 0 · x 1 ·⋯· x n so that the order of multiplication is completely specified. For example, C 2 = 2 which corresponds to the two expressions x 0 · (x 1 · x 2) and (x 0 · x 1) · x 2.