enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cauchy product - Wikipedia

    en.wikipedia.org/wiki/Cauchy_product

    The Cauchy product may apply to infinite series [1] [2] or power series. [3] [4] When people apply it to finite sequences [5] or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution). Convergence issues are discussed in the next section.

  3. List of real analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_real_analysis_topics

    Convolution. Cauchy product –is the discrete convolution of two sequences; Farey sequence – the sequence of completely reduced fractions between 0 and 1; Oscillation – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.

  4. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Schwarz_inequality

    where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).

  5. Cauchy sequence - Wikipedia

    en.wikipedia.org/wiki/Cauchy_sequence

    The open interval = (,) in the set of real numbers with an ordinary distance in is not a complete space: there is a sequence = / in it, which is Cauchy (for arbitrarily small distance bound > all terms of > / fit in the (,) interval), however does not converge in — its 'limit', number 0, does not belong to the space .

  6. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    [2] [3] Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the quadrature of the parabola. [4] [5] The mathematical side of Zeno's paradoxes was resolved using the concept of a limit during the 17th century, especially through the early calculus of Isaac Newton. [6]

  7. Liouville's theorem (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    3.3 If f is less than or equal to a scalar times its input, then it is linear 3.4 Non-constant elliptic functions cannot be defined on the complex plane 3.5 Entire functions have dense images

  8. Complete metric space - Wikipedia

    en.wikipedia.org/wiki/Complete_metric_space

    (This limit exists because the real numbers are complete.) This is only a pseudometric, not yet a metric, since two different Cauchy sequences may have the distance 0. But "having distance 0" is an equivalence relation on the set of all Cauchy sequences, and the set of equivalence classes is a metric space, the completion of M.

  9. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    In particular, this sequence has the combinatorial interpretation as being the number of ways to insert parentheses into the product x 0 · x 1 ·⋯· x n so that the order of multiplication is completely specified. For example, C 2 = 2 which corresponds to the two expressions x 0 · (x 1 · x 2) and (x 0 · x 1) · x 2.