Search results
Results from the WOW.Com Content Network
A space is an absolute neighborhood retract for the class , written (), if is in and whenever is a closed subset of a space in , is a neighborhood retract of . Various classes C {\displaystyle {\mathcal {C}}} such as normal spaces have been considered in this definition, but the class M {\displaystyle {\mathcal {M}}} of metrizable spaces ...
Karol Borsuk (8 May 1905 – 24 January 1982) was a Polish mathematician. His main area of interest was topology . He made significant contributions to shape theory , a term which he coined.
In mathematics, the Bing–Borsuk conjecture states that every -dimensional homogeneous absolute neighborhood retract space is a topological manifold. The conjecture has been proved for dimensions 1 and 2, and it is known that the 3-dimensional version of the conjecture implies the Poincaré conjecture .
The concept in topology was defined by Karol Borsuk in 1931. [ 2 ] Borsuk's student, Samuel Eilenberg , was with Saunders Mac Lane the founder of category theory, and (as the earliest publications on category theory concerned various topological spaces) one might have expected this term to have initially be used.
[7] For all n for fields of revolution — shown by Boris Dekster (1995). [8] The problem was finally solved in 1993 by Jeff Kahn and Gil Kalai, who showed that the general answer to Borsuk's question is no. [9] They claim that their construction shows that n + 1 pieces do not suffice for n = 1325 and for each n > 2014.
Using the Borsuk–Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry is a graduate-level mathematics textbook in topological combinatorics. It describes the use of results in topology , and in particular the Borsuk–Ulam theorem , to prove theorems in combinatorics and discrete geometry .
Endorse this file for transfer by adding |human=<your username> to this Template. If this file is freely licensed, but otherwise unsuitable for Commons (e.g. out of Commons' scope , still copyrighted in the US), then replace this Template with {{ Do not move to Commons |reason=<Why it can't be moved>}}
The following is known about retracts: A subgroup is a retract if and only if it has a normal complement. [4] The normal complement, specifically, is the kernel of the retraction. Every direct factor is a retract. [1] Conversely, any retract which is a normal subgroup is a direct factor. [5] Every retract has the congruence extension property.