Search results
Results from the WOW.Com Content Network
The ratio estimator is a statistical estimator for the ratio of means of two random variables. Ratio estimates are biased and corrections must be made when they are used in experimental or survey work. The ratio estimates are asymmetrical and symmetrical tests such as the t test should not be used to generate confidence intervals.
Matching is a statistical technique that evaluates the effect of a treatment by comparing the treated and the non-treated units in an observational study or quasi-experiment (i.e. when the treatment is not randomly assigned).
Analysis of variance (ANOVA) is a family of statistical methods used to compare the means of two or more groups by analyzing variance. Specifically, ANOVA compares the amount of variation between the group means to the amount of variation within each group.
Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. [1] Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science ...
In statistics, efficiency is a measure of quality of an estimator, of an experimental design, [1] or of a hypothesis testing procedure. [2] Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound.
A descriptive statistic (in the count noun sense) is a summary statistic that quantitatively describes or summarizes features from a collection of information, [1] while descriptive statistics (in the mass noun sense) is the process of using and analysing those statistics.
In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods.
Anderson's 1958 textbook, An Introduction to Multivariate Statistical Analysis, [7] educated a generation of theorists and applied statisticians; Anderson's book emphasizes hypothesis testing via likelihood ratio tests and the properties of power functions: admissibility, unbiasedness and monotonicity.