Search results
Results from the WOW.Com Content Network
The apparent speed for PRF A falls in the 200MPH filter, and the apparent speed for PRF B falls in the 400MPH filter. This combination places the true target speed at 1,400MPH (2x6+2 or 2x5+4). This can be seen graphically when range intervals are stacked end-to-end as shown below.
Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses. This signal processing technique is required with pulse-Doppler radar .
A pulse per second (PPS or 1PPS) is an electrical signal that has a width of less than one second and a sharply rising or abruptly falling edge that accurately repeats once per second. PPS signals are output by radio beacons, frequency standards , other types of precision oscillators and some GPS receivers.
Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing signals, such as sound, images, potential fields, seismic signals, altimetry processing, and scientific measurements. [1]
Examples of pulse shapes: (a) rectangular pulse, (b) cosine squared (raised cosine) pulse, (c) Dirac pulse, (d) sinc pulse, (e) Gaussian pulse. A pulse in signal processing is a rapid, transient change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value. [1]
A frequency divider, also called a clock divider or scaler or prescaler, is a circuit that takes an input signal of a frequency, , and generates an output signal of a frequency: f o u t = f i n N {\displaystyle f_{out}={\frac {f_{in}}{N}}}
Pulse Doppler radar may have 50 or more pulses between the radar and the reflector. Pulse Doppler relies on medium pulse repetition frequency (PRF) from about 3 kHz to 30 kHz. Each transmit pulse is separated by 5 km to 50 km distance. Range and speed of the target are folded by a modulo operation produced by the sampling process.
The flag can be held in one of eight distinct positions: Straight up, 45° left, 90° left, 135° left, straight down (which is the rest state, where he is sending no signal), 135° right, 90° right, and 45° right. Each signal (symbol) carries three bits of information. It takes three binary digits to encode eight states. The data rate is ...