Search results
Results from the WOW.Com Content Network
The solution is unique if and only if the rank equals the number of variables. Otherwise the general solution has k free parameters where k is the difference between the number of variables and the rank; hence in such a case there is an infinitude of solutions.
which completes the proof that 3 is the unique solution of + =. In general, both existence (there exists at least one object) and uniqueness (there exists at most one object) must be proven, in order to conclude that there exists exactly one object satisfying a said condition.
A singular solution y s (x) of an ordinary differential equation is a solution that is singular or one for which the initial value problem (also called the Cauchy problem by some authors) fails to have a unique solution at some point on the solution. The set on which a solution is singular may be as small as a single point or as large as the ...
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...
For instance, the differential equation dy / dt = y 2 with initial condition y(0) = 1 has the solution y(t) = 1/(1-t), which is not defined at t = 1. Nevertheless, if f is a differentiable function defined over a compact subset of R n, then the initial value problem has a unique solution defined over the entire R. [6]
From a computational point of view, it is faster to solve the variables in reverse order, a process known as back-substitution. One sees the solution is z = −1, y = 3, and x = 2. So there is a unique solution to the original system of equations.
The Banach fixed point theorem is then invoked to show that there exists a unique fixed point, which is the solution of the initial value problem. An older proof of the Picard–Lindelöf theorem constructs a sequence of functions which converge to the solution of the integral equation, and thus, the solution of the initial value problem.
Electromagnetism uniqueness theorem for the solution of Maxwell's equation. Uniqueness case in finite group theory. The word unique is sometimes replaced by essentially unique, whenever one wants to stress that the uniqueness is only referred to the underlying structure, whereas the form may vary in all ways that do not affect the mathematical ...