enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  3. Linear function (calculus) - Wikipedia

    en.wikipedia.org/wiki/Linear_function_(calculus)

    The y-intercept is the initial value = = at =. The slope a measures the rate of change of the output y per unit change in the input x. In the graph, moving one unit to the right (increasing x by 1) moves the y-value up by a: that is, (+) = +.

  4. Linear equation - Wikipedia

    en.wikipedia.org/wiki/Linear_equation

    The graph of this function is a line with slope and y-intercept. The functions whose graph is a line are generally called linear functions in the context of calculus . However, in linear algebra , a linear function is a function that maps a sum to the sum of the images of the summands.

  5. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. [1] The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity.

  6. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    Graph of y = ax 2 + bx + c, where a and the discriminant b 2 − 4ac are positive, with. Roots and y-intercept in red; Vertex and axis of symmetry in blue; Focus and directrix in pink; Visualisation of the complex roots of y = ax 2 + bx + c: the parabola is rotated 180° about its vertex (orange).

  7. Graph operations - Wikipedia

    en.wikipedia.org/wiki/Graph_operations

    Graph with all the edges that connect the vertices of the first graph with the vertices of the second graph. It is a commutative operation (for unlabelled graphs); [2] graph products based on the cartesian product of the vertex sets: cartesian graph product: it is a commutative and associative operation (for unlabelled graphs), [2 ...

  8. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    An example of a stationary point of inflection is the point (0, 0) on the graph of y = x 3. The tangent is the x-axis, which cuts the graph at this point. An example of a non-stationary point of inflection is the point (0, 0) on the graph of y = x 3 + ax, for any nonzero a. The tangent at the origin is the line y = ax, which cuts the graph at ...

  9. Principal axis theorem - Wikipedia

    en.wikipedia.org/wiki/Principal_axis_theorem

    In each case, the x and y axes are the principal axes. This is easily seen, given that there are no cross-terms involving products xy in either expression. However, the situation is more complicated for equations like 5 x 2 + 8 x y + 5 y 2 = 1. {\displaystyle 5x^{2}+8xy+5y^{2}=1.}