Search results
Results from the WOW.Com Content Network
In chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups (−OH) in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds. The "bond" involves this linkage C−O−PO − 2 O−C . [ 1 ]
Oligonucleotide synthesis is the chemical synthesis of relatively short fragments of nucleic acids with defined chemical structure . The technique is extremely useful in current laboratory practice because it provides a rapid and inexpensive access to custom-made oligonucleotides of the desired sequence.
Finally, a phosphodiester bond between the two DNA ends is formed via the nucleophilic attack of the 3'-hydroxyl at the end of a DNA strand on the activated 5′-phosphoryl group of another. [4] A nick in the DNA (i.e. a break in one strand of a double-stranded DNA) can be repaired very efficiently by the ligase. However, a complicating feature ...
A phosphodiesterase (PDE) is an enzyme that breaks a phosphodiester bond. Usually, phosphodiesterase refers to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below.
Nucleic acids can only be synthesized in vivo in the 5′-to-3′ direction, as the polymerases that assemble various types of new strands generally rely on the energy produced by breaking nucleoside triphosphate bonds to attach new nucleoside monophosphates to the 3′-hydroxyl (−OH) group, via a phosphodiester bond.
This is typically via hydrolysis of a small pendant chemical group on one of the molecules, typically resulting in the formation of new C-O, C-S, or C-N bonds. For example, DNA ligase can join two complementary fragments of nucleic acid by forming phosphodiester bonds, and repair single stranded breaks that arise in double stranded DNA during ...
The incorporation of ddNTPs in the reaction valves are simply used to terminate the synthesis of a growing DNA strand, resulting in partially replicated DNA fragments. This is because DNA polymerase requires the 3' OH group of the growing chain and the 5' phosphate group of the incoming dNTP to create a phosphodiester bond. [2]
RNA hydrolysis occurs when the deprotonated 2’ OH of the ribose, acting as a nucleophile, attacks the adjacent phosphorus in the phosphodiester bond of the sugar-phosphate backbone of the RNA. [1] There is a transition state (shown above), where the phosphorus is bonded to five oxygen atoms. [2]