enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    In fluid dynamics, the Reynolds number (Re) is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. [2] At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow , while at high Reynolds numbers, flows tend to be turbulent .

  3. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  4. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.

  5. Dimensionless physical constant - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_physical...

    In aerodynamics for example, if one considers one particular airfoil, the Reynolds number value of the laminar–turbulent transition is one relevant dimensionless number of the problem. However, it is strictly related to the particular problem: for example, it is related to the airfoil being considered and also to the type of fluid in which it ...

  6. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    The Reynolds number is a dimensionless quantity which characterises the magnitude of inertial effects compared to the magnitude of viscous effects. A low Reynolds number (Re ≪ 1) indicates that viscous forces are very strong compared to inertial forces.

  7. Inviscid flow - Wikipedia

    en.wikipedia.org/wiki/Inviscid_flow

    The Reynolds number (Re) is a dimensionless quantity that is commonly used in fluid dynamics and engineering. [6] [7] Originally described by George Gabriel Stokes in 1850, it became popularized by Osborne Reynolds after whom the concept was named by Arnold Sommerfeld in 1908. [7] [8] [9] The Reynolds number is calculated as:

  8. Lift coefficient - Wikipedia

    en.wikipedia.org/wiki/Lift_coefficient

    C L is a function of the angle of the body to the flow, its Reynolds number and its Mach number. The section lift coefficient c l refers to the dynamic lift characteristics of a two-dimensional foil section, with the reference area replaced by the foil chord. [1] [2]

  9. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    Its value depends on the flow's Reynolds number Re and on the pipe's relative roughness ε / D. The log function is understood to be base-10 (as is customary in engineering fields): if x = log(y), then y = 10 x. The ln function is understood to be base-e: if x = ln(y), then y = e x.