enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.

  3. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Cluster analysis refers to a family of algorithms and tasks rather than one ...

  4. Document clustering - Wikipedia

    en.wikipedia.org/wiki/Document_clustering

    Hard clustering computes a hard assignment – each document is a member of exactly one cluster. The assignment of soft clustering algorithms is soft – a document's assignment is a distribution over all clusters. In a soft assignment, a document has fractional membership in several clusters. [1]: 499 Dimensionality reduction methods can be ...

  5. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Cluster analysis, a fundamental task in data mining and machine learning, involves grouping a set of data points into clusters based on their similarity. k-means clustering is a popular algorithm used for partitioning data into k clusters, where each cluster is represented by its centroid.

  6. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay includes simple examples of the EM algorithm such as clustering using the soft k-means algorithm, and emphasizes the variational view of the EM algorithm, as described in Chapter 33.7 of version 7.2 (fourth edition).

  7. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/.../Automatic_Clustering_Algorithms

    Unlike partitioning and hierarchical methods, density-based clustering algorithms are able to find clusters of any arbitrary shape, not only spheres. The density-based clustering algorithm uses autonomous machine learning that identifies patterns regarding geographical location and distance to a particular number of neighbors.

  8. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    In statistics, cluster analysis is the algorithmic grouping of objects into homogeneous groups based on numerical measurements. Model-based clustering [1] based on a statistical model for the data, usually a mixture model.

  9. Davies–Bouldin index - Wikipedia

    en.wikipedia.org/wiki/Davies–Bouldin_index

    The starting point for this new version of the validation index is the result of a given soft clustering algorithm (e.g. fuzzy c-means), shaped with the computed clustering partitions and membership values associating the elements with the clusters. In the soft domain, each element of the system belongs to every classes, given the membership ...