enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.

  3. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Hard clustering: each object belongs to a cluster or not; Soft clustering (also: fuzzy clustering): each object belongs to each cluster to a certain degree (for example, a likelihood of belonging to the cluster) There are also finer distinctions possible, for example: Strict partitioning clustering: each object belongs to exactly one cluster

  4. Document clustering - Wikipedia

    en.wikipedia.org/wiki/Document_clustering

    Hard clustering computes a hard assignment – each document is a member of exactly one cluster. The assignment of soft clustering algorithms is soft – a document's assignment is a distribution over all clusters. In a soft assignment, a document has fractional membership in several clusters. [1]: 499 Dimensionality reduction methods can be ...

  5. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    k-means clustering is a popular algorithm used for partitioning data into k clusters, where each cluster is represented by its centroid. However, the pure k -means algorithm is not very flexible, and as such is of limited use (except for when vector quantization as above is actually the desired use case).

  6. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    DBSCAN optimizes the following loss function: [10] For any possible clustering = {, …,} out of the set of all clusterings , it minimizes the number of clusters under the condition that every pair of points in a cluster is density-reachable, which corresponds to the original two properties "maximality" and "connectivity" of a cluster: [1]

  7. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    In statistics, cluster analysis is the algorithmic grouping of objects into homogeneous groups based on numerical measurements. Model-based clustering [1] based on a statistical model for the data, usually a mixture model.

  8. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  9. Category:Cluster analysis algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Cluster_analysis...

    This category contains algorithms used for cluster analysis. Pages in category "Cluster analysis algorithms" The following 42 pages are in this category, out of 42 total.