Search results
Results from the WOW.Com Content Network
The circumcircle of three collinear points is the line on which the three points lie, often referred to as a circle of infinite radius. Nearly collinear points often lead to numerical instability in computation of the circumcircle. Circumcircles of triangles have an intimate relationship with the Delaunay triangulation of a set of points.
Circumcircle, the circumscribed circle of a triangle, which always exists for a given triangle. Cyclic polygon, a general polygon that can be circumscribed by a circle. The vertices of this polygon are concyclic points. All triangles are cyclic polygons. Cyclic quadrilateral, a special case of a cyclic polygon.
This point must be equidistant from the vertices of the triangle.) This circle is called the circumcircle of the triangle. One way of formulating Thales's theorem is: if the center of a triangle's circumcircle lies on the triangle then the triangle is right, and the center of its circumcircle lies on its hypotenuse.
A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle. Three points in the plane that do not all fall on a straight line are concyclic, so every triangle is a cyclic polygon, with a well-defined ...
As for any right triangle, the converse of Thales' theorem says that the diameter of the circumcircle equals the hypotenuse; hence for primitive triples the circumdiameter is m 2 + n 2, and the circumradius is half of this and thus is rational but non-integer (since m and n have opposite parity).
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
Two triangles are said to be poristic triangles if they have the same incircle and circumcircle. Given a circle with Center O and radius R and another circle with center I and radius r, there are an infinite number of triangles ABC with Circle O(R) as circumcircle and I(r) as incircle if and only if OI 2 = R 2 − 2Rr. These triangles form a ...
In a right triangle, the median from the hypotenuse (that is, the line segment from the midpoint of the hypotenuse to the right-angled vertex) divides the right triangle into two isosceles triangles. This is because the midpoint of the hypotenuse is the center of the circumcircle of the right triangle, and each of the two triangles created by ...