Search results
Results from the WOW.Com Content Network
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.
Thus, when generating a bounded sequence of primes, when the next identified prime exceeds the square root of the upper limit, all the remaining numbers in the list are prime. [9] In the example given above that is achieved on identifying 11 as next prime, giving a list of all primes less than or equal to 80.
However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper it was conjectured to contain all odd primes, even though it is rather inefficient.
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...
A prime number is a natural number that has no natural number divisors other than the number 1 and itself.. To find all the prime numbers less than or equal to a given integer N, a sieve algorithm examines a set of candidates in the range 2, 3, …, N, and eliminates those that are not prime, leaving the primes at the end.
The remaining numbers are doubled and incremented by one, giving a list of the odd prime numbers (that is, all primes except 2) below 2n + 2. The sieve of Sundaram sieves out the composite numbers just as the sieve of Eratosthenes does, but even numbers are not considered; the work of "crossing out" the multiples of 2 is done by the final ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
One proof is to note that φ(d) is also equal to the number of possible generators of the cyclic group C d ; specifically, if C d = g with g d = 1, then g k is a generator for every k coprime to d. Since every element of C n generates a cyclic subgroup, and each subgroup C d ⊆ C n is generated by precisely φ(d) elements of C n, the formula ...