Search results
Results from the WOW.Com Content Network
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
The thermal grease 860 is a silicone oil with a Zinc Oxide filler and 8616 and 8617 are synthetic oils with various fillers including Aluminum Oxide and Boron Nitride. At 25 °C the densities are 2.40, 2.69 and 1.96 g/mL for the greases 860, 8616 and 8617 respectively.
A 2008 review paper written by Philips researcher Clemens J. M. Lasance notes that: "Although there is an analogy between heat flow by conduction (Fourier's law) and the flow of an electric current (Ohm’s law), the corresponding physical properties of thermal conductivity and electrical conductivity conspire to make the behavior of heat flow ...
The thermal conductivity is a characteristic of the particular material. Values of thermal conductivities for various materials are listed in the list of thermal conductivities . As mentioned earlier in the article the convection heat transfer coefficient for each stream depends on the type of fluid, flow properties and temperature properties.
In thermal conductivity, k is defined as "the quantity of heat, Q, transmitted in time (t) through a thickness (L), in a direction normal to a surface of area (A), due to a temperature difference (ΔT) [...]". Thermal conductivity is a material property that is primarily dependent on the medium's phase, temperature, density, and molecular bonding.
The heat generated dissipates into the sample on both sides of the sensor, at a rate depending on the thermal transport properties of the material. By recording temperature vs. time response in the sensor, the thermal conductivity, thermal diffusivity and specific heat capacity of the material can be calculated.
Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P = / W ML 2 T −3: Thermal intensity I = / W⋅m −2: MT −3: Thermal/heat flux density (vector analogue of thermal intensity above) q
As quoted from various sources in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 12, Properties of Solids; Thermal and Physical Properties of Pure Metals / Thermal Conductivity of Crystalline Dielectrics / Thermal Conductivity of Metals and Semiconductors as a Function of Temperature