Search results
Results from the WOW.Com Content Network
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (15 psi).
There are different aviation oxygen systems and delivery methods available depending on the specific application. The oxygen source may be chemical oxygen generators, high pressure portable gaseous oxygen storage systems (gas cylinders), on-board oxygen generating systems (oxygen concentrators), or liquid oxygen systems. [4]
Boiling liquid oxygen This is a list of gases at standard conditions , which means substances that boil or sublime at or below 25 °C (77 °F) and 1 atm pressure and are reasonably stable. List
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 ...
Freezing is a phase transition in which a liquid turns into a solid when its temperature is lowered below its freezing point. [ 1 ] [ 2 ] For most substances, the melting and freezing points are the same temperature; however, certain substances possess differing solid-liquid transition temperatures.
Oxygen gas is increasingly obtained by these non-cryogenic technologies (see also the related vacuum swing adsorption). [103] Oxygen gas can also be produced through electrolysis of water into molecular oxygen and hydrogen. DC electricity must be used: if AC is used, the gases in each limb consist of hydrogen and oxygen in the explosive ratio 2:1.
Liquid oxygen is provided to hospitals for conversion to gas for patients with breathing problems, and liquid nitrogen is used in the medical field for cryosurgery, by inseminators to freeze semen, and by field and lab scientists to preserve samples.
A typical phase diagram.The solid green line applies to most substances; the dashed green line gives the anomalous behavior of water. In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium. [1]