enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_mapping_theorem

    In complex analysis, the Riemann mapping theorem states that if is a non-empty simply connected open subset of the complex number plane which is not all of , then there exists a biholomorphic mapping (i.e. a bijective holomorphic mapping whose inverse is also holomorphic) from onto the open unit disk

  3. Riemannian metric and Lie bracket in computational anatomy

    en.wikipedia.org/wiki/Riemannian_metric_and_Lie...

    Shapes in Computational Anatomy (CA) are studied via the use of diffeomorphic mapping for establishing correspondences between anatomical coordinate systems. In this setting, 3-dimensional medical images are modelled as diffeomorphic transformations of some exemplar, termed the template I t e m p {\displaystyle I_{temp}} , resulting in the ...

  4. Isothermal coordinates - Wikipedia

    en.wikipedia.org/wiki/Isothermal_coordinates

    This demonstrates that a Riemannian metric and an orientation on a two-dimensional manifold combine to induce the structure of a Riemann surface (i.e. a one-dimensional complex manifold). Furthermore, given an oriented surface, two Riemannian metrics induce the same holomorphic atlas if and only if they are conformal to one another.

  5. Riemann surface - Wikipedia

    en.wikipedia.org/wiki/Riemann_surface

    There are several equivalent definitions of a Riemann surface. A Riemann surface X is a connected complex manifold of complex dimension one. This means that X is a connected Hausdorff space that is endowed with an atlas of charts to the open unit disk of the complex plane: for every point x ∈ X there is a neighbourhood of x that is homeomorphic to the open unit disk of the complex plane, and ...

  6. Uniformization theorem - Wikipedia

    en.wikipedia.org/wiki/Uniformization_theorem

    The measurable Riemann mapping theorem shows more generally that the map to an open subset of the complex sphere in the uniformization theorem can be chosen to be a quasiconformal map with any given bounded measurable Beltrami coefficient.

  7. Harmonic coordinates - Wikipedia

    en.wikipedia.org/wiki/Harmonic_coordinates

    In Riemannian geometry, a branch of mathematics, harmonic coordinates are a certain kind of coordinate chart on a smooth manifold, determined by a Riemannian metric on the manifold. They are useful in many problems of geometric analysis due to their regularity properties.

  8. Biharmonic map - Wikipedia

    en.wikipedia.org/wiki/Biharmonic_map

    In the mathematical field of differential geometry, a biharmonic map is a map between Riemannian or pseudo-Riemannian manifolds which satisfies a certain fourth-order partial differential equation. A biharmonic submanifold refers to an embedding or immersion into a Riemannian or pseudo-Riemannian manifold which is a biharmonic map when the ...

  9. Gauss's lemma (Riemannian geometry) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(Riemannian...

    In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let M be a Riemannian manifold, equipped with its Levi-Civita connection, and p a point of M. The exponential map is a mapping from the tangent space ...

  1. Related searches riemannian mapping definition biology quizlet exam answers page

    riemann mapping wikipediariemann mapping theorem