Search results
Results from the WOW.Com Content Network
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product = is a product distribution.
The product of two Gaussian functions is a Gaussian, and the convolution of two Gaussian functions is also a Gaussian, with variance being the sum of the original variances: = +. The product of two Gaussian probability density functions (PDFs), though, is not in general a Gaussian PDF.
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
The mutual information of a distribution is a special case of the Kullback–Leibler divergence in which is the full multivariate distribution and is the product of the 1-dimensional marginal distributions.
The triangular distribution on [a, b], a special case of which is the distribution of the sum of two independent uniformly distributed random variables (the convolution of two uniform distributions). The trapezoidal distribution; The truncated normal distribution on [a, b]. The U-quadratic distribution on [a, b].
A ratio distribution (also known as a quotient distribution) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two (usually independent ) random variables X and Y , the distribution of the random variable Z that is formed as the ratio Z = X / Y is a ratio ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
the product of two random variables is a random variable; addition and multiplication of random variables are both commutative ; and there is a notion of conjugation of random variables, satisfying ( XY ) * = Y * X * and X ** = X for all random variables X , Y and coinciding with complex conjugation if X is a constant.