Search results
Results from the WOW.Com Content Network
Python 2.7 and 3.x also support dict comprehensions (similar to list comprehensions), a compact syntax for generating a dictionary from any iterator:
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
Python's tuple assignment, fully available in its foreach loop, also makes it trivial to iterate on (key, value) pairs in dictionaries: for key , value in some_dict . items (): # Direct iteration on a dict iterates on its keys # Do stuff
For dictionaries with very few mappings, it may make sense to implement the dictionary using an association list, which is a linked list of mappings. With this implementation, the time to perform the basic dictionary operations is linear in the total number of mappings.
Python dictionaries (a form of associative array) can also be directly iterated over, when the dictionary keys are returned; or the items() method of a dictionary can be iterated over where it yields corresponding key,value pairs as a tuple:
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Python makes a distinction between lists and tuples. Lists are written as [1, 2, 3], are mutable, and cannot be used as the keys of dictionaries (dictionary keys must be immutable in Python). Tuples, written as (1, 2, 3), are immutable and thus can be used as keys of dictionaries, provided all of the tuple's elements are immutable.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.