Search results
Results from the WOW.Com Content Network
C++ reference for std::priority_queue; Descriptions by Lee Killough; libpqueue is a generic priority queue (heap) implementation (in C) used by the Apache HTTP Server project. Survey of known priority queue structures by Stefan Xenos; UC Berkeley - Computer Science 61B - Lecture 24: Priority Queues (video) - introduction to priority queues ...
In computer science, a leftist tree or leftist heap is a priority queue implemented with a variant of a binary heap. Every node x has an s-value which is the distance to the nearest leaf in subtree rooted at x. [1] In contrast to a binary heap, a leftist tree attempts to be very unbalanced.
Priority queue: A priority queue is an abstract concept like "a list" or "a map"; just as a list can be implemented with a linked list or an array, a priority queue can be implemented with a heap or a variety of other methods. K-way merge: A heap data structure is useful to merge many already-sorted input streams into a single sorted output ...
This makes the min-max heap a very useful data structure to implement a double-ended priority queue. Like binary min-heaps and max-heaps, min-max heaps support logarithmic insertion and deletion and can be built in linear time. [3] Min-max heaps are often represented implicitly in an array; [4] hence it's referred to as an implicit data structure.
In computer science, a binomial heap is a data structure that acts as a priority queue.It is an example of a mergeable heap (also called meldable heap), as it supports merging two heaps in logarithmic time.
Binary heaps are a common way of implementing priority queues. [1]: 162–163 The binary heap was introduced by J. W. J. Williams in 1964 as a data structure for implementing heapsort. [2] A binary heap is defined as a binary tree with two additional constraints: [3]
In computer science, a priority search tree is a tree data structure for storing points in two dimensions. It was originally introduced by Edward M. McCreight. [1] It is effectively an extension of the priority queue with the purpose of improving the search time from O(n) to O(s + log n) time, where n is the number of points in the tree and s is the number of points returned by the search.
Chen et al. [11] examined priority queues specifically for use with Dijkstra's algorithm and concluded that in normal cases using a d-ary heap without decrease-key (instead duplicating nodes on the heap and ignoring redundant instances) resulted in better performance, despite the inferior theoretical performance guarantees.