Search results
Results from the WOW.Com Content Network
The hydraulic diameter is similarly defined as 4 times the cross-sectional area of a pipe A, divided by its "wetted" perimeter P. For a circular pipe of radius R, at full flow, this is = = as one would expect. This is equivalent to the above definition of the 2D mean diameter.
A diameter of an ellipse is any line passing through the centre of the ellipse. [2] Half of any such diameter may be called a semidiameter, although this term is most often a synonym for the radius of a circle or sphere. [3] The longest diameter is called the major axis.
In geometry, the circumference (from Latin circumferens, meaning "carrying around") is the perimeter of a circle or ellipse.The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1]
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length. Using the fact that one part of one chord times the other part is equal to the same product taken along a chord intersecting the first chord, we find that (2r − x)x = (y / 2) 2. Solving for r, we find the required result.
S 1: a 1-sphere is a circle of radius r; S 2: a 2-sphere is an ordinary sphere; S 3: a 3-sphere is a sphere in 4-dimensional Euclidean space. Spheres for n > 2 are sometimes called hyperspheres. The n-sphere of unit radius centered at the origin is denoted S n and is often referred to as "the" n-sphere. The ordinary sphere is a ...
If the tube has a circular section of radius , and the meniscus has a spherical shape, the radius of curvature is = / , where is the contact angle. The Laplace pressure is then calculated according to the Young-Laplace equation : Δ p = 2 γ r , {\displaystyle \Delta p={\frac {2\gamma }{r}},} where γ {\displaystyle \gamma } is the surface ...
The band gets thicker, and this would increase its volume. But it also gets shorter in circumference, and this would decrease its volume. The two effects exactly cancel each other out. In the extreme case of the smallest possible sphere, the cylinder vanishes (its radius becomes zero) and the height equals the diameter of the sphere.