enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relational algebra - Wikipedia

    en.wikipedia.org/wiki/Relational_algebra

    The relational algebra uses set union, set difference, and Cartesian product from set theory, and adds additional constraints to these operators to create new ones.. For set union and set difference, the two relations involved must be union-compatible—that is, the two relations must have the same set of attributes.

  3. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product is anticommutative (that is, a × b = − b × a) and is distributive over addition, that is, a × (b + c) = a × b + a × c. [1] The space together with the cross product is an algebra over the real numbers, which is neither commutative nor associative, but is a Lie algebra with the cross product being the Lie bracket.

  4. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  5. Crossed product - Wikipedia

    en.wikipedia.org/wiki/Crossed_product

    The crossed product of a von Neumann algebra by a group G acting on it is similar except that we have to be more careful about topologies, and need to construct a Hilbert space acted on by the crossed product. (Note that the von Neumann algebra crossed product is usually larger than the algebraic crossed product discussed above; in fact it is ...

  6. Projection (set theory) - Wikipedia

    en.wikipedia.org/wiki/Projection_(set_theory)

    Projection (linear algebra) – Idempotent linear transformation from a vector space to itself; Projection (relational algebra) – Operation that restricts a relation to a specified set of attributes; Relation (mathematics) – Relationship between two sets, defined by a set of ordered pairs

  7. Composition of relations - Wikipedia

    en.wikipedia.org/wiki/Composition_of_relations

    Another form of composition of relations, which applies to general -place relations for , is the join operation of relational algebra. The usual composition of two binary relations as defined here can be obtained by taking their join, leading to a ternary relation, followed by a projection that removes the middle component.

  8. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.

  9. Relation algebra - Wikipedia

    en.wikipedia.org/wiki/Relation_algebra

    A relation algebra (L, ∧, ∨, −, 0, 1, •, I, ˘) is an algebraic structure equipped with the Boolean operations of conjunction x∧y, disjunction x∨y, and negation x −, the Boolean constants 0 and 1, the relational operations of composition x•y and converse x˘, and the relational constant I, such that these operations and constants satisfy certain equations constituting an ...