enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stability (learning theory) - Wikipedia

    en.wikipedia.org/wiki/Stability_(learning_theory)

    Stability, also known as algorithmic stability, is a notion in computational learning theory of how a machine learning algorithm output is changed with small perturbations to its inputs. A stable learning algorithm is one for which the prediction does not change much when the training data is modified slightly.

  3. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    The performance of machine learning algorithms is ... the aim of many problems in statistical learning theory is to bound or characterize the difference of the ...

  4. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    Supervised learning involves learning from a training set of data. Every point in the training is an input–output pair, where the input maps to an output. The learning problem consists of inferring the function that maps between the input and the output, such that the learned function can be used to predict the output from future input.

  5. Structural risk minimization - Wikipedia

    en.wikipedia.org/wiki/Structural_risk_minimization

    Structural risk minimization (SRM) is an inductive principle of use in machine learning. Commonly in machine learning, a generalized model must be selected from a finite data set, with the consequent problem of overfitting – the model becoming too strongly tailored to the particularities of the training set and generalizing poorly to new data ...

  6. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    With the rise of deep learning, a new family of methods, called deep generative models (DGMs), [8] [9] is formed through the combination of generative models and deep neural networks. An increase in the scale of the neural networks is typically accompanied by an increase in the scale of the training data, both of which are required for good ...

  7. Sanity check - Wikipedia

    en.wikipedia.org/wiki/Sanity_check

    A sanity check or sanity test is a basic test to quickly evaluate whether a claim or the result of a calculation can possibly be true. It is a simple check to see if the produced material is rational (that the material's creator was thinking rationally, applying sanity). The point of a sanity test is to rule out certain classes of obviously ...

  8. Self-supervised learning - Wikipedia

    en.wikipedia.org/wiki/Self-supervised_learning

    Self-GenomeNet is an example of self-supervised learning in genomics. [18] Self-supervised learning continues to gain prominence as a new approach across diverse fields. Its ability to leverage unlabeled data effectively opens new possibilities for advancement in machine learning, especially in data-driven application domains.

  9. Lazy learning - Wikipedia

    en.wikipedia.org/wiki/Lazy_learning

    In machine learning, lazy learning is a learning method in which generalization of the training data is, in theory, delayed until a query is made to the system, as opposed to eager learning, where the system tries to generalize the training data before receiving queries.