enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    Fast moving satellites can have a Doppler shift of dozens of kilohertz relative to a ground station. The speed, thus magnitude of Doppler effect, changes due to earth curvature. Dynamic Doppler compensation, where the frequency of a signal is changed progressively during transmission, is used so the satellite receives a constant frequency ...

  3. GPS signals - Wikipedia

    en.wikipedia.org/wiki/GPS_signals

    The carrier frequency varies by roughly 5 kHz due to the Doppler effect when the receiver is stationary; if the receiver moves, the variation is higher. The code frequency deviation is 1/1,540 times the carrier frequency deviation for L1 because the code frequency is 1/1,540 of the carrier frequency (see § Frequencies used by GPS). The down ...

  4. Radar signal characteristics - Wikipedia

    en.wikipedia.org/wiki/Radar_signal_characteristics

    Doppler spectrum. Deliberately no units given (but could be dBu and MHz for example). This is an issue only with a particular type of system; the pulse-Doppler radar, which uses the Doppler effect to resolve velocity from the apparent change in frequency caused by targets that have net radial velocities compared to the radar device. Examination ...

  5. Satellite geolocation - Wikipedia

    en.wikipedia.org/wiki/Satellite_geolocation

    The frequency differences observed are due to different Doppler shift resulting from relative satellite motion and differences in the translation frequencies of the two satellite channels. Channel translation frequencies and downlink Doppler shift and delay can be calibrated out of the measurements by observing transmitters of known location ...

  6. Pulse-Doppler signal processing - Wikipedia

    en.wikipedia.org/wiki/Pulse-Doppler_signal...

    Pulse-Doppler signal processing is a radar and CEUS performance enhancement strategy that allows small high-speed objects to be detected in close proximity to large slow moving objects. Detection improvements on the order of 1,000,000:1 are common.

  7. Doppler tracking - Wikipedia

    en.wikipedia.org/wiki/Doppler_tracking

    Doppler tracking.The Doppler effect allows the measurement of the distance between a transmitter from space and a receiver on the ground by observing how the frequency received from the transmitter changes as it approaches the transmitter, is overhead, and moves away.

  8. Error analysis for the Global Positioning System - Wikipedia

    en.wikipedia.org/wiki/Error_analysis_for_the...

    Hence the satellites' clocks gain approximately 38,640 nanoseconds a day or 38.6 μs per day due to relativistic effects in total. In order to compensate for this gain, a GPS clock's frequency needs to be slowed by the fraction: 5.307 × 10 −10 – 8.349 × 10 −11 = 4.472 × 10 −10

  9. Relativistic Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Doppler_effect

    The relativistic Doppler effect is the change in frequency, wavelength and amplitude [1] of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect, first proposed by Christian Doppler in 1842 [2]), when taking into account effects described by the special theory of relativity.