Search results
Results from the WOW.Com Content Network
Once synthesis of the polypeptide chain is complete, the polypeptide chain folds to adopt a specific structure which enables the protein to carry out its functions. The basic form of protein structure is known as the primary structure , which is simply the polypeptide chain i.e. a sequence of covalently bonded amino acids.
In organic chemistry, peptide synthesis is the production of peptides, compounds where multiple amino acids are linked via amide bonds, also known as peptide bonds. Peptides are chemically synthesized by the condensation reaction of the carboxyl group of one amino acid to the amino group of another.
[1] [2] A polypeptide is a longer, continuous, unbranched peptide chain. [3] Polypeptides that have a molecular mass of 10,000 Da or more are called proteins . [ 4 ] Chains of fewer than twenty amino acids are called oligopeptides , and include dipeptides , tripeptides , and tetrapeptides .
Amino acids link to one another by peptide bonds which form through a dehydration reaction that joins the carboxyl group of one amino acid to the amine group of the next in a head-to-tail manner to form a polypeptide chain. The chain has two ends – an amine group, the N-terminus, and an unbound carboxyl group, the C-terminus. [2]
The tRNA anticodon interacts with the mRNA codon in order to bind an amino acid to growing polypeptide chain. The process of tRNA charging. Protein synthesis occurs via a process called translation. [53] During translation, genetic material called mRNA is read by ribosomes to generate a protein polypeptide chain. [53]
Polypeptide chains fold in a particular manner depending on the solution they are in. The fact that all amino acids contain R groups with different properties is the main reason proteins fold. In a hydrophilic environment such as cytosol , the hydrophobic amino acids will concentrate at the core of the protein, while the hydrophilic amino acids ...
Quaternary structure is the three-dimensional structure consisting of the aggregation of two or more individual polypeptide chains (subunits) that operate as a single functional unit . The resulting multimer is stabilized by the same non-covalent interactions and disulfide bonds as in tertiary structure.
Intramolecular transesterification, resulting in a branched polypeptide. In inteins, the new ester bond is broken by an intramolecular attack by the soon-to-be C-terminal asparagine. Intermolecular transesterification can transfer a whole segment from one polypeptide to another, as is seen in the Hedgehog protein autoprocessing.