enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n. So g is a primitive root modulo n if and only if g is a generator of the multiplicative group of integers modulo n.

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Weisstein, Eric W. "Primitive Root". MathWorld. Web-based tool to interactively compute group tables by John Jones; OEIS sequence A033948 (Numbers that have a primitive root (the multiplicative group modulo n is cyclic)) Numbers n such that the multiplicative group modulo n is the direct product of k cyclic groups:

  4. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    where the modulus m is a prime number or a power of a prime number, the multiplier a is an element of high multiplicative order modulo m (e.g., a primitive root modulo n), and the seed X 0 is coprime to m. Other names are multiplicative linear congruential generator (MLCG) [2] and multiplicative congruential generator (MCG).

  5. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer. If a primitive root modulo m exists, then there are exactly φ(φ(m)) such primitive roots, where φ is the Euler's totient function.

  6. Root of unity modulo n - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity_modulo_n

    The roots of unity modulo n are exactly the integers that are coprime with n. In fact, these integers are roots of unity modulo n by Euler's theorem, and the other integers cannot be roots of unity modulo n, because they are zero divisors modulo n. A primitive root modulo n, is a generator of the group of units of the ring of integers modulo n.

  7. Carmichael function - Wikipedia

    en.wikipedia.org/wiki/Carmichael_function

    Such an element is called a primitive λ-root modulo n. The Carmichael function is named after the American mathematician Robert Carmichael who defined it in 1910. [ 1 ] It is also known as Carmichael's λ function , the reduced totient function , and the least universal exponent function .

  8. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    If the order of a is actually equal to φ(n), and therefore as large as possible, then a is called a primitive root modulo n. This means that the group U(n) is cyclic and the residue class of a generates it. The order of a (mod n) also divides λ(n), a value of the Carmichael function, which is an even stronger statement than the divisibility ...

  9. Dirichlet character - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_character

    In analytic number theory and related branches of mathematics, a complex-valued arithmetic function: is a Dirichlet character of modulus (where is a positive integer) if for all integers and : [1]