Search results
Results from the WOW.Com Content Network
On a sphere of unit radius, the sides of the triangle are arcs of great circles. Accordingly, their lengths can be expressed in radians or any other units of angular measure. Let A, B, C be the angles at the three vertices of the triangle and let a, b, c be the respective lengths of the opposite sides.
In mathematics, a degenerate case is a limiting case of a class of objects which appears to be qualitatively different from (and usually simpler than) the rest of the class; [1] "degeneracy" is the condition of being a degenerate case. [2] The definitions of many classes of composite or structured objects often implicitly include inequalities.
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
In modern terms, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. [57] The size of an angle is formalized as an angular measure. In Euclidean geometry, angles are used to study polygons and triangles, as well as forming an object of study in their own right. [43]
The concept of a triangulation may also be generalized somewhat to subdivisions into shapes related to triangles. In particular, a pseudotriangulation of a point set is a partition of the convex hull of the points into pseudotriangles—polygons that, like triangles, have exactly three convex vertices. As in point set triangulations ...
In geometry, Apollonius's theorem is a theorem relating the length of a median of a triangle to the lengths of its sides. It states that the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
The two triangles on the left are congruent. The third is similar to them. The last triangle is neither congruent nor similar to any of the others. Congruence permits alteration of some properties, such as location and orientation, but leaves others unchanged, like distances and angles. The unchanged properties are called invariants.