enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. No-slip condition - Wikipedia

    en.wikipedia.org/wiki/No-slip_condition

    The no-slip condition poses a problem in viscous flow theory at contact lines: places where an interface between two fluids meets a solid boundary. Here, the no-slip boundary condition implies that the position of the contact line does not move, which is not observed in reality. Analysis of a moving contact line with the no slip condition ...

  3. Boundary conditions in fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]

  4. Self-similar solution - Wikipedia

    en.wikipedia.org/wiki/Self-similar_solution

    The boundary conditions of no-slip is (=) = Also, the condition that the plate has no effect on the fluid at infinity is enforced as = Now, from the Navier-Stokes ...

  5. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition (zero velocity at the wall). The flow velocity then monotonically increases above the surface until ...

  6. Von Kármán constant - Wikipedia

    en.wikipedia.org/wiki/Von_Kármán_constant

    In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition.

  7. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    The initial, no-slip condition on the wall is (,) = ⁡, (,) =, and the second boundary condition is due to the fact that the motion at = is not felt at infinity. The flow is only due to the motion of the plate, there is no imposed pressure gradient.

  8. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    The no slip boundary condition at the pipe wall requires that u = 0 at r = R (radius of the pipe), which yields c 2 = ⁠ GR 2 / 4μ ⁠. Thus we have finally the following parabolic velocity profile: = (). The maximum velocity occurs at the pipe centerline (r = 0), u max = ⁠ GR 2 / 4μ ⁠.

  9. Category:Boundary conditions - Wikipedia

    en.wikipedia.org/wiki/Category:Boundary_conditions

    Pages in category "Boundary conditions" The following 20 pages are in this category, out of 20 total. ... Neumann boundary condition; No-slip condition;