Search results
Results from the WOW.Com Content Network
A similarity measure can take many different forms depending on the type of data being clustered and the specific problem being solved. One of the most commonly used similarity measures is the Euclidean distance, which is used in many clustering techniques including K-means clustering and Hierarchical clustering. The Euclidean distance is a ...
Pages in category "Similarity measures" The following 10 pages are in this category, out of 10 total. This list may not reflect recent changes. ...
Similarity (geometry), the property of sharing the same shape; Matrix similarity, a relation between matrices; Similarity measure, a function that quantifies the similarity of two objects Cosine similarity, which uses the angle between vectors; String metric, also called string similarity; Semantic similarity, in computational linguistics
In statistics, Gower's distance between two mixed-type objects is a similarity measure that can handle different types of data within the same dataset and is particularly useful in cluster analysis or other multivariate statistical techniques. Data can be binary, ordinal, or continuous variables.
In linguistics, lexical similarity is a measure of the degree to which the word sets of two given languages are similar. A lexical similarity of 1 (or 100%) would mean a total overlap between vocabularies, whereas 0 means there are no common words. There are different ways to define the lexical similarity and the results vary accordingly.
Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content [citation needed] as opposed to lexicographical similarity.
In data analysis, cosine similarity is a measure of similarity between two non-zero vectors defined in an inner product space. Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths. It follows that the cosine similarity does not depend on the ...
In statistics, the Bhattacharyya distance is a quantity which represents a notion of similarity between two probability distributions. [1] It is closely related to the Bhattacharyya coefficient, which is a measure of the amount of overlap between two statistical samples or populations.