Search results
Results from the WOW.Com Content Network
The matching pursuit is an example of a greedy algorithm applied on signal approximation. A greedy algorithm finds the optimal solution to Malfatti's problem of finding three disjoint circles within a given triangle that maximize the total area of the circles; it is conjectured that the same greedy algorithm is optimal for any number of circles.
Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...
The basic algorithm – greedy search – works as follows: search starts from an enter-point vertex by computing the distances from the query q to each vertex of its neighborhood {: (,)}, and then finds a vertex with the minimal distance value. If the distance value between the query and the selected vertex is smaller than the one between the ...
Typically, a greedy algorithm is used to solve a problem with optimal substructure if it can be proven by induction that this is optimal at each step. [1] Otherwise, provided the problem exhibits overlapping subproblems as well, divide-and-conquer methods or dynamic programming may be used. If there are no appropriate greedy algorithms and the ...
In the basic version of an algorithm, the large dictionary needs to be searched at each iteration. Improvements include the use of approximate dictionary representations and suboptimal ways of choosing the best match at each iteration (atom extraction). [9] The matching pursuit algorithm is used in MP/SOFT, a method of simulating quantum ...
The greedy randomized adaptive search procedure (also known as GRASP) is a metaheuristic algorithm commonly applied to combinatorial optimization problems. GRASP typically consists of iterations made up from successive constructions of a greedy randomized solution and subsequent iterative improvements of it through a local search . [ 1 ]
In the above paper, the authors proposed a simulated annealing method where less-than-optimal swaps were made with a small probability. This probability was proportional to the value of making the switches. Another possible metaheuristic optimization method is a tabu search, which adds a memory to the swap decision. In its most simplistic form ...
A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.