enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molar concentration - Wikipedia

    en.wikipedia.org/wiki/Molar_concentration

    In the International System of Units (SI), the coherent unit for molar concentration is mol/m 3. However, most chemical literature traditionally uses mol/dm 3, which is the same as mol/L. This traditional unit is often called a molar and denoted by the letter M, for example: 1 mol/m 3 = 10 −3 mol/dm 3 = 10 −3 mol/L = 10 −3 M = 1 mM = 1 ...

  3. Thermodynamic activity - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_activity

    The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.

  4. Liquid junction potential - Wikipedia

    en.wikipedia.org/wiki/Liquid_junction_potential

    where and are activities of HCl solutions of right and left hand electrodes, respectively, and is the transport number of Cl −. Liquid junction potential is the difference between the two EMFs of the two concentration cells, with and without ionic transport:

  5. Ionic strength - Wikipedia

    en.wikipedia.org/wiki/Ionic_strength

    The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.

  6. Henderson–Hasselbalch equation - Wikipedia

    en.wikipedia.org/wiki/Henderson–Hasselbalch...

    In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ⁡ ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.

  7. Acid dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Acid_dissociation_constant

    A simple example is provided by the effect of replacing the hydrogen atoms in acetic acid by the more electronegative chlorine atom. The electron-withdrawing effect of the substituent makes ionisation easier, so successive pK a values decrease in the series 4.7, 2.8, 1.4, and 0.7 when 0, 1, 2, or 3 chlorine atoms are present. [49]

  8. pH - Wikipedia

    en.wikipedia.org/wiki/PH

    For instance, a 5×10 −8 M solution of HCl would be expected to have a pH of 7.3 based on the above procedure, which is incorrect as it is acidic and should have a pH of less than 7. In such cases, the system can be treated as a mixture of the acid or base and water, which is an amphoteric substance.

  9. Buffer solution - Wikipedia

    en.wikipedia.org/wiki/Buffer_solution

    Buffer capacity β for a 0.1 M solution of a weak acid with a pK a = 7 This equation shows that there are three regions of raised buffer capacity (see figure 2). In the central region of the curve (coloured green on the plot), the second term is dominant, and β ≈ 2.303 T HA K a [ H + ] ( K a + [ H + ] ) 2 . {\displaystyle \beta \approx 2.303 ...