enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cooley–Tukey FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm

    The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size = in terms of N 1 smaller DFTs of sizes N 2, recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers).

  3. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    An example FFT algorithm structure, using a decomposition into half-size FFTs A discrete Fourier analysis of a sum of cosine waves at 10, 20, 30, 40, and 50 Hz. A fast Fourier transform (FFT) is an algorithm that computes the Discrete Fourier Transform (DFT) of a sequence, or its inverse (IDFT).

  4. Prime-factor FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Prime-factor_FFT_algorithm

    The prime-factor algorithm (PFA), also called the Good–Thomas algorithm (1958/1963), is a fast Fourier transform (FFT) algorithm that re-expresses the discrete Fourier transform (DFT) of a size N = N 1 N 2 as a two-dimensional N 1 ×N 2 DFT, but only for the case where N 1 and N 2 are relatively prime.

  5. Vector-radix FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Vector-radix_FFT_algorithm

    As with the Cooley–Tukey FFT algorithm, the two dimensional vector-radix FFT is derived by decomposing the regular 2-D DFT into sums of smaller DFT's multiplied by "twiddle" factors. A decimation-in-time ( DIT ) algorithm means the decomposition is based on time domain x {\displaystyle x} , see more in Cooley–Tukey FFT algorithm .

  6. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    where "FFT" denotes the fast Fourier transform, and f is the spatial frequency spans from 0 to N/2 – 1. The proposed FFT-based imaging approach is diagnostic technology to ensure a long life and stable to culture arts. This is a simple, cheap which can be used in museums without affecting their daily use.

  7. Bailey's FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Bailey's_FFT_algorithm

    The Bailey's FFT (also known as a 4-step FFT) is a high-performance algorithm for computing the fast Fourier transform (FFT). This variation of the Cooley–Tukey FFT algorithm was originally designed for systems with hierarchical memory common in modern computers (and was the first FFT algorithm in this so called "out of core" class).

  8. Bruun's FFT algorithm - Wikipedia

    en.wikipedia.org/wiki/Bruun's_FFT_algorithm

    At the end of the recursion, for s = n-1, there remain 2 n-1 linear polynomials encoding two Fourier coefficients X 0 and X 2 n-1 for the first and for the any other k th polynomial the coefficients X k and X 2 n-k. At each recursive stage, all of the polynomials of the common degree 4M-1 are reduced to two parts of half the degree 2M-1.

  9. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    Eq.1 can also be evaluated outside the domain [,], and that extended sequence is -periodic.Accordingly, other sequences of indices are sometimes used, such as [,] (if is even) and [,] (if is odd), which amounts to swapping the left and right halves of the result of the transform.