enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The k-dimensional variant of Newton's method can be used to solve systems of greater than k (nonlinear) equations as well if the algorithm uses the generalized inverse of the non-square Jacobian matrix J + = (J T J) −1 J T instead of the inverse of J.

  3. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .

  4. Nonlinear conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_conjugate...

    There, both step direction and length are computed from the gradient as the solution of a linear system of equations, with the coefficient matrix being the exact Hessian matrix (for Newton's method proper) or an estimate thereof (in the quasi-Newton methods, where the observed change in the gradient during the iterations is used to update the ...

  5. Nonlinear system - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_system

    In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]

  6. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    In the absence of rounding errors, direct methods would deliver an exact solution (for example, solving a linear system of equations = by Gaussian elimination). Iterative methods are often the only choice for nonlinear equations. However, iterative methods are often useful even for linear problems involving many variables (sometimes on the ...

  7. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    The Gauss–Newton algorithm is used to solve non-linear least squares problems, which is equivalent to minimizing a sum of squared function values. It is an extension of Newton's method for finding a minimum of a non-linear function.

  8. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Newton's method — based on linear approximation around the current iterate; quadratic convergence Kantorovich theorem — gives a region around solution such that Newton's method converges; Newton fractal — indicates which initial condition converges to which root under Newton iteration; Quasi-Newton method — uses an approximation of the ...

  9. Quasilinearization - Wikipedia

    en.wikipedia.org/wiki/Quasilinearization

    Just as with Newton's method for nonlinear algebraic equations, however, difficulties may arise: for instance, the original nonlinear equation may have no solution, or more than one solution, or a multiple solution, in which cases the iteration may converge only very slowly, may not converge at all, or may converge instead to the wrong solution.