enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023 [update] , the only known Fermat primes are F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , and F 4 = 65537 (sequence A019434 in the OEIS ).

  3. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    The multiplicative property of the norm implies that a prime number p is either a Gaussian prime or the norm of a Gaussian prime. Fermat's theorem asserts that the first case occurs when p = 4 k + 3 , {\displaystyle p=4k+3,} and that the second case occurs when p = 4 k + 1 {\displaystyle p=4k+1} and p = 2. {\displaystyle p=2.}

  4. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    The probability of the existence of another Fermat prime is less than one in a billion. [6] ... All prime numbers from 31 to 6,469,693,189 for free download.

  5. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    For these numbers, repeated application of the Fermat primality test performs the same as a simple random search for factors. While Carmichael numbers are substantially rarer than prime numbers (Erdös' upper bound for the number of Carmichael numbers [ 3 ] is lower than the prime number function n/log(n) ) there are enough of them that Fermat ...

  6. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    The prime decomposition of the number 2450 is given by 2450 = 2 · 5 2 · 7 2.Of the primes occurring in this decomposition, 2, 5, and 7, only 7 is congruent to 3 modulo 4.

  7. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number a p − a is an integer multiple of p. In the notation of modular arithmetic , this is expressed as a p ≡ a ( mod p ) . {\displaystyle a^{p}\equiv a{\pmod {p}}.}

  8. Fermat's theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem

    The works of the 17th-century mathematician Pierre de Fermat engendered many theorems. Fermat's theorem may refer to one of the following theorems: Fermat's Last Theorem, about integer solutions to a n + b n = c n; Fermat's little theorem, a property of prime numbers; Fermat's theorem on sums of two squares, about primes expressible as a sum of ...

  9. Fermat pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Fermat_pseudoprime

    When p is a prime, p 2 is a Fermat pseudoprime to base b if and only if p is a Wieferich prime to base b. For example, 1093 2 = 1194649 is a Fermat pseudoprime to base 2, and 11 2 = 121 is a Fermat pseudoprime to base 3. The number of the values of b for n are (For n prime, the number of the values of b must be n − 1, since all b satisfy the ...