Search results
Results from the WOW.Com Content Network
Argon is the most abundant noble gas in Earth's crust, comprising 0.00015% of the crust. Nearly all argon in Earth's atmosphere is radiogenic argon-40, derived from the decay of potassium-40 in Earth's crust. In the universe, argon-36 is by far the most common argon isotope, as it is the most easily produced by stellar nucleosynthesis in ...
The argon found in Earth's atmosphere is 99.6% 40 Ar; whereas the argon in the Sun – and presumably in the primordial material that condensed into the planets – is mostly 36 Ar, with less than 15% of 38 Ar. It follows that most of the terrestrial argon derives from potassium-40 that decayed into argon-40, which eventually escaped to the ...
A stellar atmosphere is the outer region of a star, which includes the layers above the opaque photosphere; stars of low temperature might have outer atmospheres containing compound molecules. The atmosphere of Earth is composed of nitrogen (78%), oxygen (21%), argon (0.9%), carbon dioxide (0.04%) and trace gases. [2]
Total atmospheric mass is 5.1480 × 10 18 kg (1.13494 × 10 19 lb), [42] about 2.5% less than would be inferred from the average sea-level pressure and Earth's area of 51007.2 megahectares, this portion being displaced by Earth's mountainous terrain. Atmospheric pressure is the total weight of the air above unit area at the point where the ...
The abundance of argon, on the other hand, is increased as a result of the beta decay of potassium-40, also found in the Earth's crust, to form argon-40, which is the most abundant isotope of argon on Earth despite being relatively rare in the Solar System. This process is the basis for the potassium-argon dating method. [72]
The U.S. Food and Drug Administration (FDA) now classifies eggs as a “healthy, nutrient-dense" food, according to a new proposed rule. Registered dietitians react to the change.
Some organisms have instead anaerobic respiration, which extracts energy from food by reactions that do not require oxygen. The energy contents of a given mass of food is usually expressed in the metric (SI) unit of energy, the joule (J), and its multiple the kilojoule (kJ); or in the traditional unit of heat energy, the calorie (cal).
The abundance of the chemical elements is a measure of the occurrences of the chemical elements relative to all other elements in a given environment. Abundance is measured in one of three ways: by mass fraction (in commercial contexts often called weight fraction), by mole fraction (fraction of atoms by numerical count, or sometimes fraction of molecules in gases), or by volume fraction.