Search results
Results from the WOW.Com Content Network
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
Dirac equation. Dirac equation in the algebra of physical space; Dirac–Kähler equation; Doppler equations; Drake equation (aka Green Bank equation) Einstein's field equations; Euler equations (fluid dynamics) Euler's equations (rigid body dynamics) Relativistic Euler equations; Euler–Lagrange equation; Faraday's law of induction; Fokker ...
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
List of equations in nuclear and particle physics; List of equations in wave theory; ... Physics for Scientists and Engineers: With Modern Physics (6th ed.). W. H.
Betti's theorem, also known as Maxwell–Betti reciprocal work theorem, discovered by Enrico Betti in 1872, states that for a linear elastic structure subject to two sets of forces {P i} i=1,...,n and {Q j}, j=1,2,...,n, the work done by the set P through the displacements produced by the set Q is equal to the work done by the set Q through the displacements produced by the set P.
The definition also implies that the constitutive equations are spatially local; that is, the stress is only affected by the state of deformation in an infinitesimal neighborhood of the point in question, without regard for the deformation or motion of the rest of the material. It also implies that body forces (such as gravity), and inertial ...
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.