enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Event (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Event_(probability_theory)

    In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]

  3. Sample space - Wikipedia

    en.wikipedia.org/wiki/Sample_space

    The red oval is the event that a number is odd, and the blue oval is the event that a number is prime. A sample space can be represented visually by a rectangle, with the outcomes of the sample space denoted by points within the rectangle. The events may be represented by ovals, where the points enclosed within the oval make up the event. [12]

  4. Probability space - Wikipedia

    en.wikipedia.org/wiki/Probability_space

    Since the same outcome may be a member of many events, it is possible for many events to have happened given a single outcome. For example, when the trial consists of throwing two dice, the set of all outcomes with a sum of 7 pips may constitute an event, whereas outcomes with an odd number of pips may constitute another event. If the outcome ...

  5. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    For example, rolling an honest die produces one of six possible results. One collection of possible results corresponds to getting an odd number. Thus, the subset {1,3,5} is an element of the power set of the sample space of dice rolls. These collections are called events. In this case, {1,3,5} is the event that the die falls on some odd number.

  6. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to 100%. A simple example is the tossing of a fair (unbiased) coin.

  7. Littlewood's law - Wikipedia

    en.wikipedia.org/wiki/Littlewood's_law

    The proof of the law is simple. During the time that we are awake and actively engaged in living our lives, roughly for 8 hours each day, we see and hear things happening at a rate of about one per second. So the total number of events that happen to us is about 30,000 per day, or about a million per month.

  8. Collectively exhaustive events - Wikipedia

    en.wikipedia.org/wiki/Collectively_exhaustive_events

    Another example of events being collectively exhaustive and mutually exclusive at same time are, event "even" (2,4 or 6) and event "odd" (1,3 or 5) in a random experiment of rolling a six-sided die. These both events are mutually exclusive because even and odd outcome can never occur at same time.

  9. Elementary event - Wikipedia

    en.wikipedia.org/wiki/Elementary_event

    In probability theory, an elementary event, also called an atomic event or sample point, is an event which contains only a single outcome in the sample space. [1] Using set theory terminology, an elementary event is a singleton. Elementary events and their corresponding outcomes are often written interchangeably for simplicity, as such an event ...