enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.

  3. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in ordinary decimal notation.

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The arithmetical difference between two consecutive representable floating-point numbers which have the same exponent is called a unit in the last place (ULP). For example, if there is no representable number lying between the representable numbers 1.45a70c22 hex and 1.45a70c24 hex, the ULP is 2×16 −8, or 2 −31.

  5. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    Sign bit: 1 bit; Exponent width: 5 bits; Significand precision: 11 bits (10 explicitly stored) The format is laid out as follows: The format is assumed to have an implicit lead bit with value 1 unless the exponent field is stored with all zeros. Thus, only 10 bits of the significand appear in the memory format but the total precision is 11 bits.

  6. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    The implicit leading 1 is nothing but the hidden bit in IEEE 754 floating point, and the bitfield storing the remainder is thus the mantissa. However, whether or not the implicit 1 is included is a major point of confusion with both terms—and especially so with mantissa. In keeping with the original usage in the context of log tables, it ...

  7. Math library - Wikipedia

    en.wikipedia.org/wiki/Math_library

    The mantissa x (where log2(x) is between -1/2 and 1/2) is then compared to a table and intervals for further reduction into a z with known log2 and an in-range x/z, along with polynomial coefficients used for the interval x/z is in. The result is then log(z) + log(x/z) + k. [7]

  8. Mantissa - Wikipedia

    en.wikipedia.org/wiki/Mantissa

    Mantissa (/ m æ n ˈ t ɪ s ə /) may refer to: Mantissa (logarithm) , the fractional part of the common (base-10) logarithm Significand (also commonly called mantissa), the significant digits of a floating-point number or a number in scientific notation

  9. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    Precision is defined as the minimum difference between two successive mantissa representations; thus it is a function only in the mantissa; while the gap is defined as the difference between two successive numbers. [4]