enow.com Web Search

  1. Ads

    related to: 3 manifolds

Search results

  1. Results from the WOW.Com Content Network
  2. 3-manifold - Wikipedia

    en.wikipedia.org/wiki/3-manifold

    The prime decomposition theorem for 3-manifolds states that every compact, orientable 3-manifold is the connected sum of a unique (up to homeomorphism) collection of prime 3-manifolds. A manifold is prime if it cannot be presented as a connected sum of more than one manifold, none of which is the sphere of the same dimension.

  3. Introduction to 3-Manifolds - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_3-Manifolds

    Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...

  4. Spherical 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Spherical_3-manifold

    In mathematics, a spherical 3-manifold M is a 3-manifold of the form = / where is a finite subgroup of O(4) acting freely by rotations on the 3-sphere. All such manifolds are prime, orientable, and closed. Spherical 3-manifolds are sometimes called elliptic 3-manifolds.

  5. Prime decomposition of 3-manifolds - Wikipedia

    en.wikipedia.org/wiki/Prime_decomposition_of_3...

    If is a prime 3-manifold then either it is or the non-orientable bundle over , or it is irreducible, which means that any embedded 2-sphere bounds a ball. So the theorem can be restated to say that there is a unique connected sum decomposition into irreducible 3-manifolds and fiber bundles of S 2 {\displaystyle S^{2}} over S 1 . {\displaystyle ...

  6. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    Some illustrative examples of non-orientable manifolds include: (1) the Möbius strip, which is a manifold with boundary, (2) the Klein bottle, which must intersect itself in its 3-space representation, and (3) the real projective plane, which arises naturally in geometry.

  7. Hyperbolic 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_3-manifold

    Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from being the case for hyperbolic manifolds).

  1. Ads

    related to: 3 manifolds