Search results
Results from the WOW.Com Content Network
In vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl.
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]
Rindler chart, for = in equation , plotted on a Minkowski diagram. The dashed lines are the Rindler horizons The dashed lines are the Rindler horizons The worldline of a body in hyperbolic motion having constant proper acceleration α {\displaystyle \alpha } in the X {\displaystyle X} -direction as a function of proper time τ {\displaystyle ...
A hypersurface of X defined by the equation F(x) = c is called a characteristic hypersurface at x if σ P ( x , d F ( x ) ) = 0. {\displaystyle \sigma _{P}(x,dF(x))=0.} Invariantly, a characteristic hypersurface is a hypersurface whose conormal bundle is in the characteristic set of P .
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011.
In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface =
A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...
Indeed, it turns out that this is possible, in which case we say the congruence is hypersurface orthogonal, if and only if the vorticity vector vanishes identically. Thus, while the static observers in the cylindrical chart admits a unique family of orthogonal hyperslices T = T 0 {\displaystyle T=T_{0}} , the Langevin observers admit no such ...