enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Complex lamellar vector field - Wikipedia

    en.wikipedia.org/wiki/Complex_lamellar_vector_field

    In vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl.

  3. Hypersurface - Wikipedia

    en.wikipedia.org/wiki/Hypersurface

    In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]

  4. Rindler coordinates - Wikipedia

    en.wikipedia.org/wiki/Rindler_coordinates

    Rindler chart, for = in equation , plotted on a Minkowski diagram. The dashed lines are the Rindler horizons The dashed lines are the Rindler horizons The worldline of a body in hyperbolic motion having constant proper acceleration α {\displaystyle \alpha } in the X {\displaystyle X} -direction as a function of proper time τ {\displaystyle ...

  5. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    A hypersurface of X defined by the equation F(x) = c is called a characteristic hypersurface at x if σ P ( x , d F ( x ) ) = 0. {\displaystyle \sigma _{P}(x,dF(x))=0.} Invariantly, a characteristic hypersurface is a hypersurface whose conormal bundle is in the characteristic set of P .

  6. Symbolab - Wikipedia

    en.wikipedia.org/wiki/Symbolab

    Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011.

  7. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface =

  8. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...

  9. Born coordinates - Wikipedia

    en.wikipedia.org/wiki/Born_coordinates

    Indeed, it turns out that this is possible, in which case we say the congruence is hypersurface orthogonal, if and only if the vorticity vector vanishes identically. Thus, while the static observers in the cylindrical chart admits a unique family of orthogonal hyperslices T = T 0 {\displaystyle T=T_{0}} , the Langevin observers admit no such ...