Search results
Results from the WOW.Com Content Network
Einstein imagined a mirror in a cavity containing particles of an ideal gas and filled with black-body radiation, with the entire system in thermal equilibrium. The mirror is constrained in its motions to a direction perpendicular to its surface. [3] [p 18] [p 19] The mirror jiggles from Brownian motion due to collisions with the gas molecules.
A mirror image (in a plane mirror) is a reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical effect , it results from specular reflection off from surfaces of lustrous materials, especially a mirror or water .
Originally developed in 1978 by Vandenberg and Kuse [5] based on the research by Shepard and Metzler (1971), [1] a Mental Rotation Test (MRT) consists of a participant comparing two 3D objects (or letters), often rotated in some axis, and states if they are the same image or if they are mirror images (enantiomorphs). [1]
Einstein synchronisation (or Poincaré–Einstein synchronisation) is a convention for synchronising clocks at different places by means of signal exchanges. This synchronisation method was used by telegraphers in the middle 19th century, [citation needed] but was popularized by Henri Poincaré and Albert Einstein, who applied it to light signals and recognized its fundamental role in ...
P-asymmetry: A clock built like its mirrored image that does not behave like a mirrored image of the original clock. Although parity is conserved in electromagnetism and gravity , it is violated in weak interactions, and perhaps, to some degree, in strong interactions .
The ideal clock is a clock whose action depends only on its instantaneous velocity, and is independent of any acceleration of the clock. Wolfgang Rindler (2006). "Time dilation". Relativity: Special, General, and Cosmological. Oxford University Press. p. 43. ISBN 0-19-856731-6. Gravitational time dilation; time dilation in circular motion
Temporal logic always has the ability to reason about a timeline. So-called "linear-time" logics are restricted to this type of reasoning. Branching-time logics, however, can reason about multiple timelines. This permits in particular treatment of environments that may act unpredictably.
The implication of CPT symmetry is that a "mirror-image" of our universe — with all objects having their positions reflected through an arbitrary point (corresponding to a parity inversion), all momenta reversed (corresponding to a time inversion) and with all matter replaced by antimatter (corresponding to a charge inversion) — would ...